一道函数单调性证明题!

[复制链接]
查看11 | 回复1 | 2010-3-25 12:38:50 | 显示全部楼层 |阅读模式
证明:分两步。一、 证明对任意的x∈(a,b),x>x0,都有 φ(x)>φ(x0)对任意的x∈(a,b),x<x0,都有 φ(x)<φ(x0)。因为两种情况的证明是类似的,所以我们仅就x∈(a,b),x<x0的情况证明它。由拉格朗日中值定理,存在ξ∈(x,x0),使得〔f(x0)-f(x)〕/(x0-x)=f′(ξ)因为ξ<x0,且f′(x)单调增,所以有f′(ξ) <f′(x0)。二、 证明对任意的x1,x2∈(a,b), x1≠x0,x2≠x0,x1<x2,都有φ(x1)<φ(x2)。为了叙述方便,在下面我们假设x0<x1<x2同样由拉格朗日中值定理,存在λ∈(x0,x1),使得φ(x1)=〔f(x1)-f(x0)〕/(x1-x0)=f′(λ)从而f(x1)-f(x0)= (x1-x0)f′(λ)同样存在μ∈(x1,x2),使得〔f(x2)-f(x1)〕/(x2-x1)=f′(μ)因为μ>λ,且f′(x)单调增,所以有f′(μ) >f′(λ)。从而f(x2)-f(x1)=(x2-x1)f′(μ) >(x2-x1)f′(λ)所以φ(x2)=〔f(x2)-f(x0)〕/(x2-x0)=〔f(x2)-f(x1)+f(x1)-f(x0)〕/(x2-x0)>〔(x2-x1)f′(λ)+ (x1-x0)f′(λ) 〕/(x2-x0)=(x2-x1+ x1-x0)f′(λ)/ (x2-x0)=(x2-x0) f′(λ)/ (x2-x0)= f′(λ)=φ(x1)综合这两步,我们就证明了整个结论。
回复

使用道具 举报

千问 | 2010-3-25 12:38:50 | 显示全部楼层
分数太少了0 分 哈哈 解出来也不跟你说。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

主题

0

回帖

4882万

积分

论坛元老

Rank: 8Rank: 8

积分
48824836
热门排行