机械专业英语翻译

[复制链接]
查看11 | 回复4 | 2009-3-24 20:46:35 | 显示全部楼层 |阅读模式
Microactuators are required to drive the resonant sensors, above, to oscillate at their resonant frequency. They are also required to produce the mechanical output required of particular microsystems: this may be moving micromirrors to scan laser beams, or switch them from one fibre to another; to drive cutting tools for microsurgical applications; to drive micropumps and valves for microanalysis or microfluidic systems; or these may even be microelectrode devices to stimulate nervous tissue in neural prosthesis applications.
Within the following section a variety of methods for achieving microactuation are briefly outlined: electrostatic, magnetic, piezoelectric, hydraulic, and thermal. Of these, piezoelectric and hydraulic methods currently look most promising, although the others have their place. Electrostatic actuation runs a close third, and is possibly the most common and well developed method, but it does suffer a little from wear and sticking problems. Magnetic actuators usually require relatively high currents (and high power), and on the microscopic scale, electrostatic actuation methods usually offer better output per unit volume (the limit is somewhere in the region of going from 1cm cubed devices to a few mm cubed - depending on the application). Thermal actuators also require relatively large amounts of electrical energy, and the heat generated also has to be dissipated.
When dealing with very smooth surfaces, typical of micromachined devices, sticking or cold welding of one part to another can be a problem. These effects can increase friction to such a degree that all the output power of the device is required just to overcome it, and they can prevent some devices from operating at all. Careful design and selection of materials can be used to overcome these problems; but they still cause trouble with many micromotor designs. Another point to be aware of is that when removing micromachined devices from wet etch baths, the surface tension in the liquid can be strong enough to stick parts together.

回复

使用道具 举报

千问 | 2009-3-24 20:46:35 | 显示全部楼层
要求Microactuators驾驶共振传感器,上述,摆动以他们的谐振频率。 也要求他们导致机械产品需要特殊microsystems : 这也许是扫描激光束的移动的micromirrors,或者交换他们从一纤维到另一个; 驾驶为microsurgical应用的切割工具; 驾驶micropumps和阀门为微量分析或microfluidic系统; 或这些在神经系统的假肢应用也许甚而是刺激神经组织的微电极设备。在以下部分之内各种各样的方法为达到microactuation简要地被概述: 静电,磁性,压电,水力和上升暖流。 这些,压电和水力方法当前看最有为,虽然其他有他们的地方。 静电驱动跑一接近三,并且可能是最共同和最高度发达的方法,但它遭受一点穿戴和黏...
回复

使用道具 举报

千问 | 2009-3-24 20:46:35 | 显示全部楼层
微致动器被用来驱动谐振传感器(如上),以使其在谐振频率下振荡。它们还被用来为某些微系统产生所需的机械输出:这可以是移动微镜以扫描激光束,或将它们从一条光纤切换到另一条;驱动显微外科手术应用中的手术刀;驱动微分析系统或微流体系统中的微泵和阀门;它们甚至可以作为神经辅具应用中的微电极器件来刺激神经组织。 以下各部分将概要介绍产生微致动的各种方法:通过静电、磁...
回复

使用道具 举报

千问 | 2009-3-24 20:46:35 | 显示全部楼层
微驱动器需要谐振传感器,如上所述,振荡在其共振频率。他们还要求出示所需的机械输出特别微:这可能是移动微激光束扫描,或开关从一个纤维另一;驱动显微切割工具的应用;驱动微型泵和阀门的微量或微系统;或这些甚至可能微设备,以刺激神经组织的神经修复应用。 在下面一节不同的方法来实现microactuation简要概述:静电,磁性,压电,液压和热。这些,压电和液压方...
回复

使用道具 举报

千问 | 2009-3-24 20:46:35 | 显示全部楼层
为驱动谐振传感器,需要微型操作器;如上述,在其谐振频率下进行振荡。也要求它们产生特殊微型系统需要的机械输出:这可以移动微型镜子去扫描激光束;或把它们从一个光纤切换到另一光纤;驱动显微手术的手术工具;驱动显微分析或微流体力学用微型泵和阀门;或者这些甚至可作为微电极装置在中性修复术应用中刺激神经组织。(待译)...
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

主题

0

回帖

4882万

积分

论坛元老

Rank: 8Rank: 8

积分
48824836
热门排行