y=x的平方+bx+c交X轴于A,B.交Y轴于C,对称轴为X=1

[复制链接]
查看11 | 回复1 | 2006-3-29 12:49:21 | 显示全部楼层 |阅读模式
解:由y=x^2+bx+c的对称轴为x=1,得-b/2a=-b/2=1得b=-2C(0,-3)在抛物线上,把0、-3代入解析式后,得-3=c即c=-3得抛物线的解析式为y=x^2-2x-3根据抛物线的解析式,求得抛物线的对称轴是x=1因为|PB-PC|<=BC(三角形两边之差小于第三边),而且只有当以P、B、C三点构成的三角形退化为一条直线且P在线段BC的外侧时,才能取PB-PC=BC。因此为了使P在线段BC的外侧,我们先作点B关于对称轴x=1的对称点B',B'的坐标为(-1,0),由于对称性,所以PB=PB',而且|PB'-PC|<=B'C(两边之差小于第三边)。下面我们就是要找使|PB'-PC|取最大值的P点。由于只有当以P、B'、C三点构成的三角形退化为一条直线且P在线段B'C的外侧时,才能取PB'-PC=B'C,因此P点必为直线B'C与对称轴x=1的交点。由B'(-1,0)、C(0,-3),求得直线B'C的解析式为y=-3k-3,然后解方程组:y=-3k-3x=1求得点P的坐标为(1,-6)
回复

使用道具 举报

千问 | 2006-3-29 12:49:21 | 显示全部楼层
问题补充是否应该为(否则你给的答案1,-6就不对了): 在抛物线对称轴上是否存在P,使P到B,C两点距离之差最大。若存在,求出P的坐标。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

主题

0

回帖

4882万

积分

论坛元老

Rank: 8Rank: 8

积分
48824836
热门排行