数列公式

[复制链接]
查看11 | 回复8 | 2006-7-9 19:59:57 | 显示全部楼层 |阅读模式
等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。 等比数列:an=a1*q^(n-1)菲波那锲数列 (1 2 3 5 8 13 21。。。)这个数列从第三项开始,每一项都等于前两项之和 它的通项公式为:[(1+√5)/2]^n /√5 - [(1-√5)/2]^n /√5 【√5表示根号5】 随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887…… 还有一项性质,从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1 如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到 如果任意挑两个数为起始,比如5、-2.4,然后两项两项地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你将发现随着数列的发展,前后两项之比也越来越逼近黄金分割,且某一项的平方与前后两项之积的差值也交替相差某个值
回复

使用道具 举报

千问 | 2006-7-9 19:59:57 | 显示全部楼层
1+2+3+......+n=n(n+1)/2 2。 1^2+2^2+3^2+......+n^2=n(n+1)(2n+1)/6 3。 1^3+2^3+3^3+......+n^3=( 1+2+3+......+n)^2=n^2*(n+1)^2/4 4。 1*2+2*3+3*4+......+n(n+1)=n(n+1)(n+2)/3 5。 1*2*3+2*3*4+3*4*5+......+n(n+1)(n+2)=n(n+1)(n+2)(n+3)/4 6。 1+3+6+10+15+......
=1+(1+2)+(1+2+3)+(1+2+3+4)+......+(1+2+3+...+n)
=[1*2+2*3+3*4+......+n(n+1)]/2
=n(n+1)(n+2)/6 7。1+2+4+7+11+......+ n
=1+(1+1)+(1+1+2)+(1+1+2+3)+......+(1+1+2+3+...+n)
=(n+1)*1+[1*2+2*3+3*4+......+n(n+1)]/2
=(n+1)+n(n+1)(n+2)/6 8。1/2+1/2*3+1/3*4+......+1/n(n+1)
=1-1/(n+1)=n/(n+1) 9。1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+......+1/(1+2+3+...+n)
=2/2*3+2/3*4+2/4*5+......+2/n(n+1)=(n-1)/(n+1) 10。1/1*2+2/2*3+3/2*3*4+......+(n-1)/2*3*4*...*n =(2*3*4*...*n-1)/2*3*4*...*n 11。1^2+3^2+5^2+..........(2n-1)^2=n(4n^2-1)/3 12。1^3+3^3+5^3+..........(2n-1)^3=n^2(2n^2-1) 13。1^4+2^4+3^4+..........+n^4=n(n+1)(2n+1)(3n^2+3n-1)/30 14。1^5+2^5+3^5+..........+n^5=n^2 (n+1)^2 (2n^2+2n-1) /12 15。1+2+2^2+2^3+......+2^n=2^(n+1) – 1不在其中的发给我。我给你算
回复

使用道具 举报

千问 | 2006-7-9 19:59:57 | 显示全部楼层
那么多又记不住,记这几个就已经很够了。等差:an=a1+(n-1)d
Sn=[(a1+an)*n]/2
=a1*n+n*(n-1)d/2 等比:an=a1*q^(n-1)
Sn=[a1(1-q^n)]/(1-q)
=(a1-an*q)/(1-q)
回复

使用道具 举报

千问 | 2006-7-9 19:59:57 | 显示全部楼层
等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。 等比数列:an=a1*q^(n-1) 菲波那锲数列 (1 2 3 5 8 13 21。。。)这个数列从第三项开始,每一项都等于前两项之和
回复

使用道具 举报

千问 | 2006-7-9 19:59:57 | 显示全部楼层
等差:an=a1+(n-1)d Sn=[(a1+an)*n]/2 =a1*n+n*(n-1)d/2 等比:an=a1*q^(n-1) Sn=[a1(1-q^n)]/(1-q) =(a1-an*q)/(1-q)通项(求任意项):an=(a1+an)÷d(公差)-1n(项数)求项数公式n=(an-a1)÷d+1等差数列an=a1+(n-1)d
Sn=1/2(n)(n-1)d+a1n等比数列:an=a1*q^(n-1)
Sn=[a1*(1-q^n)}/(1-q)
回复

使用道具 举报

千问 | 2006-7-9 19:59:57 | 显示全部楼层
1+2+3+......+n=n(n+1)/2 2。 1^2+2^2+3^2+......+n^2=n(n+1)(2n+1)/6 3。 1^3+2^3+3^3+......+n^3=( 1+2+3+......+n)^2=n^2*(n+1)^2/4 4。 1*2+2*3+3*4+......+n(n+1)=n(n+1)(n+2)/3 5。 1*2*3+2*3*4+3*4*5+......+n(n+1)(n+2)=n(n+1)(n+2)(n+3)/4 6。 1+3+6+10+15+...... =1+(1+2)+(1+2+3)+(1+2+3+4)+......+(1+2+3+...+n) =[1*2+2*3+3*4+......+n(n+1)]/2 =n(n+1)(n+2)/6 7。1+2+4+7+11+......+ n =1+(1+1)+(1+1+2)+(1+1+2+3)+......+(1+1+2+3+...+n) =(n+1)*1+[1*2+2*3+3*4+......+n(n+1)]/2 =(n+1)+n(n+1)(n+2)/6 8。1/2+1/2*3+1/3*4+......+1/n(n+1) =1-1/(n+1)=n/(n+1) 9。1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+......+1/(1+2+3+...+n) = 2/2*3+2/3*4+2/4*5+......+2/n(n+1)=(n-1)/(n+1) 10。1/1*2+2/2*3+3/2*3*4+......+(n-1)/2*3*4*...*n =(2*3*4*...*n-1)/2*3*4*...*n 11。1^2+3^2+5^2+..........(2n-1)^2=n(4n^2-1)/3 12。1^3+3^3+5^3+..........(2n-1)^3=n^2(2n^2-1) 13。1^4+2^4+3^4+..........+n^4=n(n+1)(2n+1)(3n^2+3n-1)/30 14。1^5+2^5+3^5+..........+n^5=n^2 (n+1)^2 (2n^2+2n-1) /12 15。1+2+2^2+2^3+......+2^n=2^(n+1) – 1
回复

使用道具 举报

千问 | 2006-7-9 19:59:57 | 显示全部楼层
一楼病了吧!!!!等差:An=A1+(n-1)d
Sn=[(A1+An)*n]/2
=A1*n+n*(n-1)d/2等比:An=A1*q^(n-1)
回复

使用道具 举报

千问 | 2006-7-9 19:59:57 | 显示全部楼层
1+2+......+n=n(n+1)/2an={a1=s1n=1;an=sn-sn-1n>=2}
回复

使用道具 举报

千问 | 2006-7-9 19:59:57 | 显示全部楼层
这个数列是由13世纪意大利斐波那契提出的的,故叫斐波那契数列,它有许多神奇的性质.它的通项公式是an=1/根号5{[(1+根号5)/2]的n次方-[(1-根号5)/2]的n次方}(n属于正整数)证明如下:a(n)=a(n-1)+a(n-2)...(1)所以,a(n-1)=a(n-2)+a(n-3)[(1+根号5)/2]*a(n-1)=[(1+根号5)/2]*a(n-2)+[(1+根号5)/2]*a(n-3)...(2)(1)-(2)an-[(1+根号5)/2]*a(n-1)=[(1-根号5)/2]*{a(n-1)-[(1+根号5)/2]}*a(n-2)令an-[(1+根号5)/2]*a(n-1)=b(n-1)得到b(n-1)=[(1-根号5)/2]*b(n-2)这样bn是一个等比数列,首项b1=a2-[(1+根号5)/2]*a1=3-(1+根号5)/2*1=(5-根号5)/2所以b(n-1)=[(5-根号5)/2]*{[(1-根号5)/2]}^(n-2)即an-[(1+根号5)/2]*a(n-1)=[(5-根号5)/2]*{[(1-根号5)/2]}^(n-2)即an=[(1+根号5)/2]*a(n-1)+[(5-根号5)/2]*{[(1-根号5)/2]}^(n-2)等式两边同时除以[(1+根号5)/2]^n,得到an/[(1+根号5)/2]^n=a(n-1)/{[(1+根号5)/2]^n-1}+[(5-根号5)/2]*{[(1-根号5)/2]}^(n-2)/{[(1+根号5)/2]^n}令an/[(1+根号5)/2]^n=cn那么cn=c(n-1)+[(5-根号5)/2]*{[(1-根号5)/2]}^(n-2)/{[(1+根号5)/2]^n}其中c1=a1/[(1+根号5)/2]=2/(1+根号5)c1=(根号5-1)/2c2-c1=[(5-根号5)/(3+根号5)]*[(1-根号5)/(1+根号5)]^0(注:此部已经把上面那个长式子进行了化简)c3-c2=[(5-根号5)/(3+根号5)]*[(1-根号5)/(1+根号5)]^1...cn-c(n-1)=[(5-根号5)/(3+根号5)]*[(1-根号5)/(1+根号5)]^(n-2)将以上各式相加得到cn=(根号5-1)/2+[(5-根号5)/(3+根号5)]*{1-[(1+根号5)/(1-根号5)]^(n-1)}/[1-(1-根号5)/(1+根号5)]所以最后的结果……an=cn*[(1+根号5)/2]^n=[(1+根号5)/2]^(n-1)+[(5-根号5)/(3+根号5)]*{1-[(1+根号5)/(1-根号5)]^(n-1)}/[1-(1-根号5)/(1+根号5)]*[(1+根号5)/2]^n=1/根号5{[(1+根号5)/2]的n次方-[(1-根号5)/2]的n次方}(n属于正整数)累死我了。楼主加分吧。数学高考基础知识、常见结论详解 一、集合与简易逻辑: 一、理解集合中的有关概念 (1)集合中元素的特征: 确定性 , 互异性 , 无序性 。 集合元素的互异性:如: , ,求 ; (2)集合与元素的关系用符号 , 表示。 (3)常用数集的符号表示:自然数集 ;正整数集 、 ;整数集 ;有理数集 、实数集 。 (4)集合的表示法: 列举法 , 描述法 , 韦恩图 。 注意:区分集合中元素的形式:如: ; ; ; ; ; ; (5)空集是指不含任何元素的集合。( 、 和 的区别;0与三者间的关系) 空集是任何集合的子集,是任何非空集合的真子集。 注意:条件为 ,在讨论的时候不要遗忘了 的情况。 如: ,如果 ,求 的取值。 二、集合间的关系及其运算 (1)符号“ ”是表示元素与集合之间关系的,立体几何中的体现 点与直线(面)的关系 ; 符号“ ”是表示集合与集合之间关系的,立体几何中的体现 面与直线(面)的关系 。 (2) ; ; (3)对于任意集合 ,则: ① ; ; ; ② ; ; ; ; ③ ; ; (4)①若 为偶数,则 ;若 为奇数,则 ; ②若 被3除余0,则 ;若 被3除余1,则 ;若 被3除余2,则 ; 三、集合中元素的个数的计算: (1)若集合 中有 个元素,则集合 的所有不同的子集个数为_________,所有真子集的个数是__________,所有非空真子集的个数是 。 (2) 中元素的个数的计算公式为: ; (3)韦恩图的运用: 四、 满足条件 , 满足条件 , 若 ;则 是 的充分非必要条件 ; 若 ;则 是 的必要非充分条件 ; 若 ;则 是 的充要条件 ; 若 ;则 是 的既非充分又非必要条件 ; 五、原命题与逆否命题,否命题与逆命题具有相同的 ; 注意:“若 ,则 ”在解题中的运用, 如:“ ”是“ ”的 条件。 六、反证法:当证明“若 ,则 ”感到困难时,改证它的等价命题“若 则 ”成立, 步骤:1、假设结论反面成立;2、从这个假设出发,推理论证,得出矛盾;3、由矛盾判断假设不成立,从而肯定结论正确。 矛盾的来源:1、与原命题的条件矛盾;2、导出与假设相矛盾的命题;3、导出一个恒假命题。 适用与待证命题的结论涉及“不可能”、“不是”、“至少”、“至多”、“唯一”等字眼时。 正面词语 等于 大于 小于 是 都是 至多有一个 否定 正面词语 至少有一个 任意的 所有的 至多有n个 任意两个 否定 二、函数 一、映射与函数: (1)映射的概念: (2)一一映射:(3)函数的概念: 如:若 , ;问: 到 的映射有 个, 到 的映射有 个; 到 的函数有 个,若 ,则 到 的一一映射有 个。 函数 的图象与直线 交点的个数为 个。 二、函数的三要素: , , 。 相同函数的判断方法:① ;② (两点必须同时具备) (1)函数解析式的求法: ①定义法(拼凑):②换元法:③待定系数法:④赋值法: (2)函数定义域的求法: ① ,则 ; ② 则 ; ③ ,则 ; ④如: ,则 ; ⑤含参问题的定义域要分类讨论; 如:已知函数 的定义域是 ,求 的定义域。 ⑥对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。如:已知扇形的周长为20,半径为 ,扇形面积为 ,则 ;定义域为 。 (3)函数值域的求法: ①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如: 的形式; ②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ; ④换元法:通过变量代换转化为能求值域的函数,化归思想; ⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如: ,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。 ⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。 求下列函数的值域:① (2种方法); ② (2种方法);③ (2种方法); 三、函数的性质: 函数的单调性、奇偶性、周期性 单调性:定义:注意定义是相对与某个具体的区间而言。 判定方法有:定义法(作差比较和作商比较) 导数法(适用于多项式函数) 复合函数法和图像法。 应用:比较大小,证明不等式,解不等式。 奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数; f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。 判别方法:定义法, 图像法 ,复合函数法 应用:把函数值进行转化求解。 周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。 其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期. 应用:求函数值和某个区间上的函数解析式。 四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。 常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考) 平移变换 y=f(x)→y=f(x+a),y=f(x)+b 注意:(ⅰ)有系数,要先提取系数。如:把函数y=f(2x)经过 平移得到函数y=f(2x+4)的图象。 (ⅱ)会结合向量的平移,理解按照向量 (m,n)平移的意义。 对称变换 y=f(x)→y=f(-x),关于y轴对称 y=f(x)→y=-f(x) ,关于x轴对称 y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称 y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数) 伸缩变换:y=f(x)→y=f(ωx), y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。 一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称; 如: 的图象如图,作出下列函数图象: (1) ;(2) ; (3) ;(4) ; (5) ;(6) ; (7) ;(8) ; (9) 。 五、反函数: (1)定义: (2)函数存在反函数的条件: ; (3)互为反函数的定义域与值域的关系: ; (4)求反函数的步骤:①将 看成关于 的方程,解出 ,若有两解,要注意解的选择;②将 互换,得 ;③写出反函数的定义域(即 的值域)。 (5)互为反函数的图象间的关系: ; (6)原函数与反函数具有相同的单调性; (7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。 如:求下列函数的反函数: ; ; 七、常用的初等函数: (1)一元一次函数: ,当 时,是增函数;当 时,是减函数; (2)一元二次函数: 一般式: ;对称轴方程是 ;顶点为 ; 两点式: ;对称轴方程是 ;与 轴的交点为 ; 顶点式: ;对称轴方程是 ;顶点为 ; ①一元二次函数的单调性: 当 时: 为增函数; 为减函数;当 时: 为增函数; 为减函数; ②二次函数求最值问题:首先要采用配方法,化为 的形式, Ⅰ、若顶点的横坐标在给定的区间上,则 时:在顶点处取得最小值,最大值在距离对称轴较远的端点处取得; 时:在顶点处取得最大值,最小值在距离对称轴较远的端点处取得; Ⅱ、若顶点的横坐标不在给定的区间上,则 时:最小值在距离对称轴较近的端点处取得,最大值在距离对称轴较远的端点处取得; 时:最大值在距离对称轴较近的端点处取得,最小值在距离对称轴较远的端点处取得; 有三个类型题型: (1)顶点固定,区间也固定。如: (2)顶点含参数(即顶点变动),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外。 (3)顶点固定,区间变动,这时要讨论区间中的参数. ③二次方程实数根的分布问题: 设实系数一元二次方程 的两根为 ;则: 根的情况 等价命题 在区间 上有两根 在区间 上有两根 在区间 或 上有一根 充要条件 注意:若在闭区间 讨论方程 有实数解的情况,可先利用在开区间 上实根分布的情况,得出结果,在令 和 检查端点的情况。 (3)反比例函数: (4)指数函数: 指数运算法则: ; ; 。 指数函数:y= (a>o,a≠1),图象恒过点(0,1),单调性与a的值有关,在解题中,往往要对a分a>1和0o,a≠1) 图象恒过点(1,0),单调性与a的值有关,在解题中,往往要对a分a>1和00,则 。即不等式两边同号时,不等式两边取倒数,不等号方向要改变。 ②如果对不等式两边同时乘以一个代数式,要注意它的正负号,如果正负号未定,要注意分类讨论。 ③图象法:利用有关函数的图象(指数函数、对数函数、二次函数、三角函数的图象),直接比较大小。 ④中介值法:先把要比较的代数式与“0”比,与“1”比,然后再比较它们的大小 二、均值不等式:两个数的算术平均数不小于它们的几何平均数。 若 ,则 (当且仅当 时取等号) 基本变形:① ; ; ②若 ,则 , 基本应用:①放缩,变形; ②求函数最值:注意:①一正二定三取等;②积定和小,和定积大。 当 (常数),当且仅当 时, ; 当 (常数),当且仅当 时, ; 常用的方法为:拆、凑、平方; 如:①函数 的最小值 。 ②若正数 满足 ,则 的最小值 。 三、绝对值不等式: 注意:上述等号“=”成立的条件; 四、常用的基本不等式: (1)设 ,则 (当且仅当 时取等号) (2) (当且仅当 时取等号); (当且仅当 时取等号) (3) ; ; 五、证明不等式常用方法: (1)比较法:作差比较: 作差比较的步骤: ⑴作差:对要比较大小的两个数(或式)作差。 ⑵变形:对差进行因式分解或配方成几个数(或式)的完全平方和。 ⑶判断差的符号:结合变形的结果及题设条件判断差的符号。 注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小。 (2)综合法:由因导果。 (3)分析法:执果索因。基本步骤:要证……只需证……,只需证…… (4)反证法:正难则反。 (5)放缩法:将不等式一侧适当的放大或缩小以达证题目的。 放缩法的方法有: ⑴添加或舍去一些项,如: ; ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如: ; ⑷利用常用结论: Ⅰ、 ; Ⅱ、 ; (程度大) Ⅲ、 ; (程度小) (6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。如: 已知 ,可设 ; 已知 ,可设 ( ); 已知 ,可设 ; 已知 ,可设 ; (7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式; 六、不等式的解法: (1)一元一次不等式: Ⅰ、 :⑴若 ,则 ;⑵若 ,则 ; Ⅱ、 :⑴若 ,则 ;⑵若 ,则 ; (2)一元二次不等式: 一元二次不等式二次项系数小于零的,同解变形为二次项系数大于零;注:要对 进行讨论: (5)绝对值不等式:若 ,则 ; ; 注意:(1).几何意义: : ; : ; (2)解有关绝对值的问题,考虑去绝对值,去绝对值的方法有: ⑴对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;①若 则 ;②若 则 ;③若 则 ; (3).通过两边平方去绝对值;需要注意的是不等号两边为非负值。 (4).含有多个绝对值符号的不等式可用“按零点分区间讨论”的方法来解。 (6)分式不等式的解法:通解变形为整式不等式; ⑴ ;⑵ ; ⑶ ;⑷ ; (7)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共部分。 (8)解含有参数的不等式: 解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论: ①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性. ②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论. ③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小,设根为 (或更多)但含参数,要分 、 、 讨论。 五、数列 本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前 项和 ,则其通项为 若 满足 则通项公式可写成 .(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前 项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标. ①函数思想:等差等比数列的通项公式求和公式都可以看作是 的函数,所以等差等比数列的某些问题可以化为函数问题求解. ②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类; ③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整 体思想求解. (4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错. 一、基本概念: 1、 数列的定义及表示方法: 2、 数列的项与项数: 3、 有穷数列与无穷数列: 4、 递增(减)、摆动、循环数列: 5、 数列{an}的通项公式an: 6、 数列的前n项和公式Sn: 7、 等差数列、公差d、等差数列的结构: 8、 等比数列、公比q、等比数列的结构: 二、基本公式: 9、一般数列的通项an与前n项和Sn的关系:an= 10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。 11、等差数列的前n项和公式:Sn= Sn= Sn= 当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。 12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k (其中a1为首项、ak为已知的第k项,an≠0) 13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式); 当q≠1时,Sn= Sn= 三、有关等差、等比数列的结论 14、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。 15、等差数列{an}中,若m+n=p+q,则 16、等比数列{an}中,若m+n=p+q,则 17、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。 18、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。 19、两个等比数列{an}与{bn}的积、商、倒数组成的数列 {an bn}、 、 仍为等比数列。 20、等差数列{an}的任意等距离的项构成的数列仍为等差数列。 21、等比数列{an}的任意等距离的项构成的数列仍为等比数列。 22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d 23、三个数成等比的设法:a/q,a,aq; 四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?) 24、{an}为等差数列,则 (c>0)是等比数列。 25、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c 1) 是等差数列。 26. 在等差数列 中: (1)若项数为 ,则 (2)若数为 则, , 27. 在等比数列 中: (1) 若项数为 ,则 (2)若数为 则, 四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。 28、分组法求数列的和:如an=2n+3n 29、错位相减法求和:如an=(2n-1)2n 30、裂项法求和:如an=1/n(n+1) 31、倒序相加法求和:如an= 32、求数列{an}的最大、最小项的方法: ① an+1-an=…… 如an= -2n2+29n-3 ② (an>0) 如an= ③ an=f(n) 研究函数f(n)的增减性 如an= 33、在等差数列 中,有关Sn 的最值问题——常用邻项变号法求解: (1)当 >0,d0时,满足 的项数m使得 取最小值。 在解含绝对值的数列最值问题时,注意转化思想的应用。 六、平面向量 1.基本概念: 向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。 2. 加法与减法的代数运算: (1) . (2)若a=( ),b=( )则a b=( ). 向量加法与减法的几何表示:平行四边形法则、三角形法则。 以向量 = 、 = 为邻边作平行四边形ABCD,则两条对角线的向量 = + , = - , = - 且有| |-| |≤| |≤| |+| |. 向量加法有如下规律: + = + (交换律); +( +c)=( + )+c (结合律); +0= +(- )=0. 3.实数与向量的积:实数 与向量 的积是一个向量。 (1)| |=| |·| |; (2) 当 >0时, 与 的方向相同;当 <0时, 与 的方向相反;当 =0时, =0. (3)若 =( ),则 · =( ). 两个向量共线的充要条件: (1) 向量b与非零向量 共线的充要条件是有且仅有一个实数 ,使得b= . (2) 若 =( ),b=( )则 ‖b . 平面向量基本定理: 若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量 ,有且只有一对实数 , ,使得 = e1+ e2. 4.P分有向线段 所成的比: 设P1、P2是直线 上两个点,点P是 上不同于P1、P2的任意一点,则存在一个实数 使 = , 叫做点P分有向线段 所成的比。 当点P在线段 上时, >0;当点P在线段 或 的延长线上时, <0; 分点坐标公式:若 = ; 的坐标分别为( ),( ),( );则 ( ≠-1), 中点坐标公式: . 5. 向量的数量积: (1).向量的夹角: 已知两个非零向量 与b,作 = , =b,则∠AOB= ( )叫做向量 与b的夹角。 (2).两个向量的数量积: 已知两个非零向量 与b,它们的夹角为 ,则 ·b=| |·|b|cos . 其中|b|cos 称为向量b在 方向上的投影. (3).向量的数量积的性质: 若 =( ),b=( )则e· = ·e=| |cos (e为单位向量); ⊥b ·b=0 ( ,b为非零向量);| |= ; cos = = . (4) .向量的数量积的运算律: ·b=b· ;( )·b= ( ·b)= ·( b);( +b)·c= ·c+b·c. 6.主要思想与方法: 本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。 七、立体几何 1.平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 能够用斜二测法作图。 2.空间两条直线的位置关系:平行、相交、异面的概念; 会求异面直线所成的角和异面直线间的距离;证明两条直线是异面直线一般用反证法。 3.直线与平面 ①位置关系:平行、直线在平面内、直线与平面相交。 ②直线与平面平行的判断方法及性质,判定定理是证明平行问题的依据。 ③直线与平面垂直的证明方法有哪些? ④直线与平面所成的角:关键是找它在平面内的射影,范围是{00.900} ⑤三垂线定理及其逆定理:每年高考试题都要考查这个定理. 三垂线定理及其逆定理主要用于证明垂直关系与空间图形的度量.如:证明异面直线垂直,确定二面角的平面角,确定点到直线的垂线. 4.平面与平面 (1)位置关系:平行、相交,(垂直是相交的一种特殊情况) (2)掌握平面与平面平行的证明方法和性质。 (3)掌握平面与平面垂直的证明方法和性质定理。尤其是已知两平面垂直,一般是依据性质定理,可以证明线面垂直。 (4)两平面间的距离问题→点到面的距离问题→ (5)二面角。二面角的平面交的作法及求法: ①定义法,一般要利用图形的对称性;一般在计算时要解斜三角形; ②垂线、斜线、射影法,一般要求平面的垂线好找,一般在计算时要解一个直角三角形。 ③射影面积法,一般是二面交的两个面只有一个公共点,两个面的交线不容易找到时用此法?
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

主题

0

回帖

4882万

积分

论坛元老

Rank: 8Rank: 8

积分
48824836
热门排行